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Abstract

This report describes BLZPACK (an acronym for Block Lanczos Package), an imple-
mentation of the block Lanczos algorithm intended for the solution of eigenproblems in-
volving real, sparse, symmetric matrices. The package works in an interactive way, so the
matrices of the target problem are not passed as arguments for the interface subprogram.
This means that each time an algebraic operation with the matrices of the eigenvalue
problem has to be performed, the control is returned to the user (reverse communica-
tion strategy). The user is therefore free to exploit the characteristics of a particular
application. The fundamentals of the technique implemented are first reviewed. Next,
some practical details are outlined, such as the monitoring of the orthogonality of the
Lanczos basis, the spectral transformation, the automatic spectrum slicing and the com-
putational interval, and the vectors used in case of restart. Then, a set of applications
and conclusions are presented. Finally, a user’s guide is given in the Appendix.
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1 Introduction

The solutions of the equation

Az = ABz (1)
where A and B are n X m matrices, z is a non null vector and A is a scalar, has long
been an important computation. We recall that the previous relation defines a generalized
etgenproblem. When B is equal to the identity matrix a standard eigenproblem is obtained.
Usually, the n possible pairs (A, z), eigenvalues A\ and eigenvectors x, that satisfy (1) are
associated with fundamental characteristics of differential and integral operators describing
a physical phenomenon. In some applications from chemistry, for instance, they are related
with basic configurations of molecules (hinge-bending motions); in structural engineering,
dynamic properties of a given model (natural vibration frequencies and mode shapes); and in
nuclear power plants, neutron fluxes (the behaviour is super-critical for a dominant eigenvalue
greater than one). Depending on the complexity, the level of the discretization of a continuous
problem or the precision required for the results, A and B can reach dimensions of tens
of thousands. In practical analyses, only a subset of the n eigenpairs (A, z) is considered
relevant, either in the extremities of the spectrum or in an interval [£1,&]. Although only
a few eigenpairs may be wanted, their evaluation is usually a time consuming task. The
development of new eigensolvers, or the improvement of existing ones, has been thus the
subject of continuous research [14, 28, 38, 40].

Nowadays, Krylov subspaces based methods such as Lanczos [23] and Arnoldi [2] algorithms
are widely used for treating eigenproblems associated with large sparse matrices. They can
be shown to perform better than vector iteration (inverse or direct), transformation methods
(Jacobi, Householder or Givens) or determinant search in many practical cases. See [15]
and [33] for an overview of those techniques. The Krylov subspace associated with a matrix
A and a starting vector ¢; of unitary length is defined as

IC(Avth) = Span((leAQh---Aj_l%)- (2)

It turns out that the j-th vector of the sequence converges toward the eigenvector associated
with the dominant eigenvalue [15, 33]. The goal of the Lanczos algorithm is the generation
of a basis for a Krylov subspace. The projection of the original problem into the basis
leads to a smaller problem, involving a tridiagonal matrix (which is symmetric if A is).
Eigensolutions are then recovered through a Rayleigh-Ritz procedure [33]. Conversely, the
projection computed by Arnoldi’s method corresponds to a Hessenberg matrix [15].

A set of implementations of the Lanczos/Arnoldi algorithm have been proposed for real sym-
metric matrices [6, 7, 13, 19, 27, 32, 39]. Four packages, for instance, are of public domain
and available at Netlib [4]: ARPACK, developed by Sorensen and Lehoucq [24, 40], LANCZOS,
developed by Cullum and Willoughby [8], LANZ, developed by Jones and Patrick [20, 21, 22],
and LASO, developed by Scott [34]. One of the most robust implementations was performed
by Grimes, Lewis and Simon [16, 17, 18] which is incorporated in the MSC/NASTRAN struc-
tural analysis code, for example, and also in some scientific libraries. The main feature of
the implementation is a combination of a block Lanczos strategy with a dynamic shift-invert
scheme. Associated with the block strategy there is a Krylov subspace built from a full rank
n X p matrix Q1 = | qg) qél) q](gl) ,QTQ, = 1,1 < p < n, where pis the block size [15, 33]:

K(A,Qn,7) = span(Q1, AQ1,...A7'Qy). (3)



The approach by blocks allows for better convergence properties when there are multiple
eigenvalues and also a better data management on some computer architectures. A dynamic
shift-invert (translation of origin and inversion of the eigenvalue spectrum) is useful when
many eigenvalues are sought or the eigenvalue distribution is clustered.

The code described in this work corresponds to an implementation of the block Lanczos
algorithm intended for the solution of the problem Az = ABz, with A and B symmetric.
It is assumed that there exists a linear combination of A and B which is positive definite,
to assure that all eigenvalues are real (see [33, Chapter 15] for details). The development
of the code was originally motivated by the study of free vibration problems in structural
engineering (mainly large frame and shell structures). Upgrades were performed afterwards
aiming at applications from different fields. This was an incentive to describe and document
the code appropriately. The present version, BLZPACK, aims to be a user-friendly tool for
distinct problems involving real symmetric matrices. The package is tailored to a class of
applications for which at least one “inversion” of the operator A, = A — 0B is feasible,
where ¢ is a real scalar. With such an inverted operator the eigenvectors are preserved
while the eigenvalues are remapped. FEigenvalues lying in a range of interest can be then
set apart from the remaining eigenvalues, leading to better converge rates for the wanted
solutions. In practical cases, the inversion is replaced by a factorization of A, for the solution
of systems of linear equations. For some applications, the factorization may dominate the
computational costs, but it is often the only way to deal efficiently with the companion
eigenvalue distributions. The most important features of BLZPACK are the following:

e The matrices A and B are not passed as parameters, all algebraic operations with
them should be performed by the user outside the code. In other words, each time a
computation involving either A or B has to be performed, the control is returned to
the user. Such a computation can be then specialized for particular applications.

e An automatic spectrum slicing scheme may be activated by the user for problems of
the type Az = ABz. This option may require factorizations of matrices A — ¢ B for
a set of real scalars o, but provides for an improvement in the convergence rate and
reliable checks in the computed solutions.

¢ By setting an appropriate flag, the code can be applied to either Az = Az or Az = ABx.
In the former case, the code just skips over steps that are normally required for the
generalized eigenproblem, thus saving in operations.

In the next section, we briefly describe the governing ideas of the Lanczos method and the
implementation performed. We have opted for not giving exhaustive demonstrations. The
most important reason for it is that good references exist, so we prefer to “forward” the
reader to them when the occasion appears. On the other hand, we list some implementation
details to help the reader to understand how the code works. In the applications section, we
propose three examples to illustrate the usage of the package: a benchmark coming from a
finite element structural analysis, with multiple and clustered solutions; a SVD estimation
for a rectangular matrix related with an economics analysis model; and a problem related
with the study of motions of a protein. We also include a set of cases showing the effects
of the block size and the spectrum slicing strategy. Finally, we give a user’s guide for the
package, with two driver models.



2 The Technique

In this section we summarize the fundamentals of the block Lanczos algorithm. We begin
with the formulation for the generalized eigenproblem, comment on a positive semidefinite
matrix B, and then particularize the formulation for the standard problem. The objective
is to build an appropriate basis for the Krylov subspace defined in (2). We recall that the
Gram-Schmidt orthonormalization process could be applied to all vectors of that subspace, in
the natural order q1, Aqy, A%qq, ..., so as to construct a basis for it [33]. Nevertheless, one can
show that for the orthonormalization of the 7-th Krylov vector, it suffices to take into account
only the two previous orthonormalized vectors. Moreover, the basis can be built vector by
vector, without generating the Krylov subspace. That is exactly what the Lanczos method
allows us to compute, the process is similar for the subspace defined in (3) [15, 30, 33, 35].

Considering a real scalar o different from an eigenvalue, we can rewrite the problem (1) as
1

— g

BA;'Bz = (5—)Be (4)

where A, = A — o B. Therefore, both the symmetry and the eigenvector are preserved, the

eigenvalue being now given by )\ig. It is usually assumed (and observed) that the Lanczos

algorithm finds eigenpairs at both ends of the spectrum. The convergence pattern, however,
is mainly determined by the eigenvalue distribution. With the shift of origin and inverse
formulation indicated in (4), the eigenvalues around o are set apart from the others, namely
to the extremes of a modified spectrum, as depicted in Figure 3 (see [13], [31] and [36]
for a discussion on inverted operators). Note that the problem (4) can be simplified to
A7'Bz = (>\1Tg)$ the operator A;!B is nonsymmetric but it is self-adjoint with respect
to B and its eigenvalues are thus real. The block Lanczos basis generation strategy for this
latter problem is summarized in Table 1. Needless to say, A>! is not explicitly evaluated
due to numerical stability problems and storage requirements, but that notation make us
remember of the operator that would be used for building the Krylov subspace. On the other
hand, the operator A, can be factorized as LD LT, where L is a lower unit triangular matrix
and D is a direct sum of 1 X 1 and 2 x 2 pivot blocks, allowing for solutions of systems of
linear equations for the basis generation.

As can be seen in Table 1, the Lanczos basis is constructed from a rank p starting block Rg
(possibly defined with random entries) which leads to @1. Basically, at each step, a simulta-
neous inverse iteration on the product BQ); yields the “residual” R;, which is orthogonalized
against the two previous blocks, ;_; and ¢);. The factorization of the residual, through
a modified Gram-Schmidt process, results in the next set of p B-orthogonal vectors, ¢);41.
Thus, ¢); and R; are n X p matrices, A; is p X p and B; is p X p upper triangular, defined as

[ a1 Q192 ... Qip ] [ 51,1 51,2 ﬁl,p ]
Qg1 Q22 ... Oz, 0 52,2 ﬁ2,p
Aj=1| : ol Bi=| : E (5)
L ap1 Qpo o Qpp | | 0 0 ... Bpp |

and in a finite precision arithmetic one can write (since @;_1 and @; are orthogonal)

R; = Q;4+1Bjq :AngQj—QjAj—Qj_le. (6)
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Table 1: Block Lanczos Algorithm

set Qo =0
set Ro # 0 and factorize Ry = Q)1Bq, QITBQl =71
define 0 and A, = A—oB

for j=1,2,...

a) compute R; = A7'BQ;

b) R; — R; —Q;_1BT

c) A; — Q?BR]‘

d) Bj — R; — QjA;

e) factorize R; : R; = Q;4+1Bj+1, Q;F_'_IBQ]'_H =1
end for

After j steps, the blocks of vectors generated can be arranged as

Q=1 Q2 ... Q (7)
satisfying
QjBQ; =1 (8)
where [ is an identity matrix with j X p rows, and
QT BA;'BQ; = Tj, (9)
where ) )
A, BT
B, A; BY
T]’ = Bg A3 - . (10)
T
B
L B, Aj |

Therefore, the projection of the eigenproblem (4) into the basis defined by relation (7) is the
symmetric block tridiagonal matrix 7;, with an approximate solution

(A &) (11)
for (1) or (4) given by the Ritz value
X 1
Ap=0+ —, (12)
O}
and by the Ritz vector
Ty = Qjsk, (13)

where (0, si) is the solution of the reduced problem

T;sk = Opsk. (14)



The jx p solutions of the problem (14) can be obtained by first reducing 7’ to tridiagonal form,
for example, and igBik = 1 providing sgsk = 1. Certainly, for matrices of same dimension
the computational cost for solving (14) increases with the block size p. In many cases,
some extreme eigenvalues of T} lead to good approximations of some extreme eigenvalues of
problem (4) with j < n. Moreover, the norm of the residual vector

BA;lBik—(;\ ! )B#y

can be estimated a priori, through

. 1 .
HAZle—(X )2k

k k
| = 195(Tj—Bksi) + RiEjsill = || Ry Ejsill = By st = 8%, (15)

where || .|| is the Euclidian norm with respect to B, E; is a block matrix with the j-th block

(%)

equal to the identity matrix and the others zero, and s;" stores the bottom p elements of s.

Therefore, the monitoring of the norm ﬁ](k) allows the counting of the converged solutions,
by comparing with a specified tolerance, and the finalization of a given run.

The Modified Gram-Schmidt Factorization. The Gram-Schmidt factorization of R;
as @;4+1B;41, in step (e), Table 1, consists basically in the B-normalization of a column of
R; and the purging of this column from the remaining ones. The process starts with the first
column and so forth. If the product BR; is available, its columns can be modified in a similar
way. At theend, R; and BR; are overwritten by @41 and BQ 41, the diagonal of B, stores
the normalizing factors and its upper triangle the purging factors as defined in (5). However,
one sweep on the p columns of RB; may be not enough to produce a HQ?HBQJ-H — 1| which
is negligible. Therefore, the factorization should be performed in an iterative way, repeated
up to p X 2 times if required. After the factorization, an extra orthogonalization is usually
performed between ); and () ;41 to guarantee the local level of orthogonality. If the B-norms
of the columns of R; are tiny, and consequently ||B;41|| drops to zero, an invariant subspace
has been computed. It means that all solutions of the reduced problem lead to solutions of
the original problem. Such a situation is clearly reached when 7 X p = n. The residual block
may also result rank deficient if ¢ is applied too close to an eigenvalue, the starting vectors
are linearly dependent or j X p > n (this case is likely to happen for small problems). In
addition, if the matrix B is diagonal with £ non null entries, £ < n, that would also be the
maximum size for the basis of Lanczos vectors. In order to verify the conditioning of R; one
can compute the singular value decomposition of B;,;. This calculation is rather inexpensive
because p is usually very small when compared to n. See [5, 10, 18] for details.

A Positive Semidefinite B. A positive semidefinite matrix B in the generalized eigen-
problem implies in the existence of eigenvalues equal to —oo or +00. However, the formulation
presented heretofore still holds, providing the Lanczos vectors and eigenvectors are kept in
the proper space, in other words, purged from the unwanted components in the null space of
B [31]. In order to perform that, the matrix B is first applied to Ry, i.e., R is replaced by
BRg in Table 1. Then, one step of inverse iteration is applied to each converged Ritz vector,
which is equivalent to update & in relation (13) with

. . 1
Tp «— T+ aQﬂ'lBﬂ-lS;k)' (16)



The Standard Problem. In this case, the matrix B is simply replaced by the identity
matrix and the generation of the basis requires less operations. In addition, depending on
the application, no spectral transformation is needed and step (a) in Table 1 can be rewritten
as R; = A,Q);. A Ritz value would be then obtained as Ap =0+ 81, the corresponding Ritz
vector by relation (13). That translation, however, is not likely to improve the convergence
around o as the combination translation-inversion is. Therefore, we can just set o to zero.
See [33, page 63] for a discussion on shifts of origin.

3 Implementation Details

This section outlines some aspects of the implementation of BLZPACK. The ideas given in [13],
[16, 17, 18], [30], [20, 21, 22] and [34, 37] complement the subjects discussed here. We start
with the monitoring of the basis orthogonality and then comment on the data management
during the basis generation process, the spectral transformation, the spectrum slicing strategy
and the computational interval, and the vectors used in case of a restart.

3.1 Monitoring the orthogonality of the basis

A loss of orthogonality among the vectors of the basis Q; is generally observed after some
steps. It is caused by roundoff errors, which could be represented by an additional term, say
F;, in relation (6). On the other hand, Paige [33, page 264] showed that the departure from
orthogonality is also related to the convergence of a pair (;\k,fnk) and, therefore, with the
eigenvalue distribution of the associated problem. Once orthogonality is lost, property (8) is
no longer satisfied, and redundant copies of eigenpairs emerge. As an immediate option to
avoid this, one could apply a full reorthogonalization, i.e., orthogonalize R; against all j — 1
previous blocks. However, such a scheme would strongly increase the number of operations
at each step. On the other hand, some preventive measures based on potentially dangerous
vectors can be used to keep the basis orthogonality within a certain level, namely:

Selective Orthogonalization. The selective orthogonalization aims at keeping the columns
of R; orthogonal to all converged Z;. Therefore, whenever the error ﬁ](k) satisfies a spec-
ified tolerance, the corresponding Ritz vector 2y is calculated and stored. The tolerance
for ﬁ](k) is usually set to /€||A||, where ||A|| may be estimated through T and € is the
relative machine precision. In the following steps, the residual block R; is orthogonal-

(k) = |

ized against Z; whenever indicated by the norm 7, = #TBQ ;41 ||. This norm can

be estimated at almost no cost, without explicitly using Zz. See [18, 34] for details.

Partial Reorthogonalization. The objective of the partial reorthogonalization is to keep
R; orthogonal to all );, ¢ < j. The level of orthogonality among the blocks of vectors
is then measured at each step through the norm n; ;41 = || QX BQ;41 ||, and whenever
it is greater than a given threshold, ();41 is orthogonalized against the corresponding
Q);. The procedure can be seen as a repetition of steps (c¢) and (d) in Table 1, with Q;
instead of R;. The norm 7; ;41 can be estimated at almost no cost, without explicitly
computing matrix products with ; or @;. See [18, 37] for details.



(%)

A reasonable strategy is to reorthogonalize whenever 7;.° or 7; ;41 are greater than Venp.
Nevertheless, it is likely that the effectiveness of the selective orthogonalization or the par-
tial reorthogonalization depends on the application and such strategies are sometimes used
together [16, 17, 18, 30]. Actually, in the present implementation, we adopt the strategy
proposed by Grimes ef al. [18] and compute eigenvectors only at the end of a given run. A
selective orthogonalization will be then performed only if a restart is required. Still, a mod-
ified partial reorthogonalization strategy is used, in the sense that whenever 7; ;41 reaches
the threshold, all the previous @); are taken into account [30]. Therefore, instead of partial
reorthogonalizations at possibly close steps, a full reorthogonalization is performed at some
steps. IFinally, for both orthogonalization schemes, both @; and ();41 are orthogonalized,
since they are needed in the computation of ();42. Such a strategy assures an adequate level
of orthogonality for some subsequent steps. It should be noted that the number of extra
operations introduced by the selective orthogonalization vary with the number of converged
eigenpairs. Conversely, the extra operations introduced by the partial reorthogonalization
vary with the number of Lanczos steps. In addition, for bases of same size, the operations
for orthogonalizing ); and ;41 are proportional to p. Another important aspect is the way
the Lanczos vectors are stored. As a result, for long Lanczos runs the orthogonality control
may correspond to an important share of the computational costs.

3.2 Data Management

BLZPACK requires four two-dimensional arrays of dimensions n X p to generate the basis of
Lanczos vectors for a generalized eigenproblem. Instead of swapping entries between those
four arrays, the package uses four pointers and an array of length n x px4. Then, the pointers
exchange their values at each step, indicating the correct positioning of those four entities
inside the one dimensional array. Let us consider the scheme depicted in Figure 1. At “step 07,
the start-up, the first pointer points to Rg and the third pointer to BRy. Those matrices
are transformed into (1 and B, respectively, after an orthonormalization of their columns
by means of a Gram-Schmidt process. For the next (first) step, the first pointer receives the
value of the second, the second pointer the value of the third, the third pointer the value of
the fourth, and the fourth pointer the previous value of the first. The notations ()¢ and BQg
were introduced only to clarify the explanation: their virtual positions are overwritten by R
(computed from B@q, which is addressed to by the second pointer) and BR;. Then, these
matrices lead to )2 and B(),, respectively. The Lanczos process and exchanges of pointers
continue so that when the block @ ;41 is computed, ¢J; can be moved into the space reserved
for the basis (@ ;41 may be required in the next step for the orthogonality control scheme).
This is one of the swaps of n X p entries performed by the package at each step. The other
is related with the reverse communication strategy, to supply data to the user and obtain
results back after the computations involving A and B. Note that the overhead at this point
has been introduced for the sake of interface simplicity. The pointer strategy for the standard
problem is illustrated in Figure 2: at “step 0” the first pointer points to Rg, which leads to
@1. In the next step, the third pointer receives the value of the second, the second pointer the
value of the first, and the first pointer the previous value of the third. In this case, however,
the basis is built using only 3 arrays of dimensions n X p. The fourth pointer is kept as well,
which always receives the same entry of the second pointer. With four pointers, the same
computational module can be used to perform a Lanczos step for both types of eigenproblem.



3.3 Spectral Transformation

With a shift-invert strategy, difficult eigenvalue distributions can be remapped in a more
favorable way. In other words, the eigenvalues of the problem involving the block tridiagonal
matrix 7} will correspond to § = ﬁ The Figure 3 illustrates the new situation: solutions
close to the translation of origin ¢ are better separated in terms of 8, solutions far away from
o are grouped around 0. Let us assume that there is an eigenvalue A close to ¢ with the
corresponding approximation computed by the Lanczos algorithm given by ;\, i.e., A=o+ %.
It turns out that even a moderate value of the residual error norm (15) suffices to guarantee
that ) is a good approximation for A, in contrast with the solutions far from ¢. One can
show for example that

where the indexes of 3; and § where dropped for the sake of generality. That bound can be
further improved for well-separated eigenvalues. See [13], [18] and [31] for details.

Given an interval [£7, {g] containing o, there are two corresponding bounds in 6, 7, and ép,
as can be seen in Figure 3. An eigenvalue lying in that interval must have a counterpart 6
satisfying either 8, < 0 or 8, > Or. A similar condition can be then used to accept and
discard eigenvalue approximations when a spectrum slicing scheme is applied. The spectral
transformation offers an additional feature when implemented in terms of the factorization
A, = LDLT, for the solution of systems of linear equations. One can show that the inertias
of A, and D are the same [15]. We recall that the inertia of a matrix is given by a triple of
nonnegative integers: the number of eigenvalues less, equal, and greater than zero [15, 33].
Therefore, the number of eigenvalues in [£r,, £g] is simply given by the difference ndr — ndy,
where ndgr and ndy, are the number of negative 1 x 1 plus 2 x 2 pivots in D [11], for 0 = £
and o = {1, respectively. Such a test, also referred to as Sturm sequence check [3], allows as
well the location in the spectrum of any pair (;\k, Tr).

3.4 Spectrum Slicing and Computational Interval

A spectrum slicing strategy is useful when many eigensolutions are required, the eigenvalue
distribution is clustered (such that the converge is slow), or the continuation of a given
run is expensive when compared with the generation and factorization of a new operator
A,. Furthermore, long Lanczos runs tend to require increasing reorthogonalization efforts
(both selective orthogonalization and partial reorthogonalization). In such cases, it would be
preferable to restart with a new origin, as an attempt to save Lanczos steps and modify the
convergence rate. The eigenproblem would be then solved by pieces, based on the spectrum
that the Lanczos algorithm approximates as the basis sizes increase. However, factorizations
A, = LDLT for a set of scalars o might be required and a compromise between the factoriza-
tion costs and convergence rates should be established. Since there is no definitive criterion
to decide when a o should be abandoned and a new factorization computed, a decision based
on heuristics or computational costs is usually employed. Grimes et al. [18], for instance,
model the cost for continuing the Lanczos recurrence beyond the current step and try to
locate a point in an individual run for which the average cost per eigenvalue is minimized.
In the BLZPACK implementation the criterion is based on CPU times and convergence rates.
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Figure 3: The transformation of the spectrum.
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At each step, the combination of three factors is taken into account to verify how well the
algorithm is doing and to decide between continuing or restarting:

1. The p x 2 smallest residuals ﬁj(.k) that did not satisfy the tolerance for convergence are
examined, compared with those of the previous step and extrapolated to check if they
tend to decrease in the next step.

2. The CPU time spent with the basis generation is compared with the CPU time spent
with the basis orthogonality control.

3. The CPU time spent with the basis generation is compared with the CPU time spent
with the factorization A, = LDILL.

These factors are then weighed and combined. If the result is greater than a certain threshold,
a new factorization is assumed to be feasible. There is, however, a minimum number of steps
to be performed before o can be modified. The minimum dimension for the Lanczos basis is
set to 40 if p=1,501if p =2, 60 if 3 < p < 6, and 80 otherwise. Such a constraint aims at
gathering information from the eigenvalue spectrum to be used in the definition of the next
0. Another condition for restarting happens when ¢ is taken too close to an eigenvalue and
such a quasi-singularity is not detected during the factorization of A,. We assume that the
distribution of the eigenvalues of the reduced problem are likely to indicate that and override
the aforementioned conditions in order to avoid numerical difficulties. Conversely, one of the
objectives of the shift selection implemented is exactly not to take a value too close to an
eigenvalue. The rule is violated only when clusters of eigenvalues are detected.

The value of a new ¢ is defined considering the approximate eigenvalue distributions com-
puted with the previous o’s. The adopted strategy is similar to the one proposed by
Grimes et al. [18]. Usually, around o; there is a set of values, ;\, which are accepted as
approximate eigenvalues. There is also another set, contiguous to the prior, that does not
satisfy the convergence criterion but gives an indication of the eigenvalue distribution. Let us
call g the values in this set. Assuming that £ eigenvalues have been found to the right of o,
the objective is to define ;41 in such a way that k eigenvalues will remain to be computed to
its left. Thus, 0,41 bisects uy and pg4q. If required, 0,41 can be placed to the left of o; using
a similar approach. In some cases, the information provided by the values p is not enough
to define o;41. Then, ;41 Will be specified using 6,,4., the “radius of convergence”. Let us
assume that ;\L,i and /A\Rﬂ'7 are the farthest approximate eigenvalues computed with o;, to its
left and to its right, respectively. For each o; we define §; = maz(|o; — /A\Lﬂ'|7 lo; — /A\R7Z'|)7 and
Omaz = max(6;), 0ix1 = 0% sz X 2, where the sign depends on the side of o; the new origin
will be placed. Each translation o; defines two subintervals. In general, the spectrum slicing
strategy sets for a Lanczos run trying to close a subinterval, by determining all eigenvalues
lying in it. If the run succeeds, another subinterval is examined, otherwise the subinterval
is either kept or split. The decision between keeping or splitting is based on the number of
missing eigenvalues in the subinterval, which can be determined by the inertia information
from A,, for 0 = o7, and 0 = or, where o7, and og are the left (lower) and right (upper)
limits of the subinterval. For a subinterval splitting, o;41 is defined as the average of the
farthest eigenvalue approximations obtained to the right of o7 and to the left of op. The
average can be either arithmetic or geometric, depending on the magnitude of the entries. If
such values overlap each other, the limits of the subinterval are used instead.
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The computation interval for BLZPACK may be specified as a pair [£1,&2]. Assuming that
the number of required eigenpairs is given by m, we have three possibilities:

& > &g, the code runs from &; to & (& is the upper bound), seeking for the first m eigenpairs
to the left of & (Iigure 4). The computation finishes if more than m eigenpairs exist
in the interval or if an eigenvalue less than £, is found.

& < &g, the code runs from & to & (& is the lower bound), seeking for the first m eigenpairs
to the right of & (Figure 5). The computation finishes if more than m eigenpairs exist
in the interval or if an eigenvalue greater than & is found.

& = &, the code runs around &, seeking for the m eigenpairs closest to & (Figure 6).

When & # &; the goal is to move o toward &; or &;, depending on which is bigger as previously
mentioned. When & = & = £; the code starts with the subintervals (—o0, ] and [€, +00) and
the goal is to move o around £. The Figures 4, 5 and 6 illustrate the procedure. We define
a special variable INFO, to store information for each subinterval & as follows:

INFO(L, k): stores o7, 1 (the lower limit of the subinterval), the number of eigenvalues less
than o7, 5 (from the inertia information), the farthest converged eigenvalue to the right
of o7, 1, and the new origin translation to be applied to the right of oy, 1.

INFO(R, k): stores op (the upper limit of the subinterval), the number of eigenvalues less
than opx (from the inertia information), the farthest converged eigenvalue to the left
of oRx, and the new origin translation to be applied to the left of o ;.

Around each o in those figures there is a region indicated by brackets in which eigenvalues
have been found (the set A). A new o can be then used either to split a subinterval with
missing solutions, for example o3, or to extend a subinterval in which all solutions were found,
for example o4. When the upper (or lower) limit of a subinterval is moved too far, which
means that there are much more eigenvalues to be computed to its left (or right) than the
number required, the factorization is discarded and a new origin is chosen. A subinterval that
has been closed is indicated by a bold line over the eigenvalue distribution. The dashed lines
indicate how the contents of INFO are updated as the subintervals are opened and closed.

3.5 Vectors for restarting

The number of steps required for the convergence of the required solutions depends on the
starting vectors and mainly on the eigenvalue distribution of the problem being solved. When
the maximum number of steps allowed is reached, or a spectrum slicing is applied, without
computing all required solutions, a restart is performed. Then, the code takes as initial
vectors a linear combination of p x 2 vectors corresponding to the smallest residuals ﬁ](k)
that did not satisfy the converge criterion in the previous run. The Figure 7 shows values
associated with the vectors considered: a) when a subinterval is split, b) when the origin is
kept fixed, and c¢) when a standard problem is being solved. Again, brackets indicate regions
where eigenvalues have been found. Therefore, the vectors considered are those corresponding
to the values included in the set p.
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Figure 7: Vectors for restarting: a) splitting a subinterval, b) a fixed o, ¢) Az = Az.
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4 Applications

In this section, we give three examples to illustrate the usage of BLZPACK: a benchmark
coming from a finite element structural analysis; a SVD estimation for a rectangular matrix
coming from an economics analysis model; and a problem related with the investigation of
motions of a protein. We also include a set of cases available in the Harwell-Boeing Sparse
Matrix Collection [12], to show the effects of the block size and the spectrum slicing strategy.
We use the notation of the previous sections: m denotes the number of required solutions, n
the dimension of the matrices and p the block size for the Lanczos algorithm. Except for the
third application, all computations have been performed in double precision.

4.1 The Double Cross

A collection of validation models for finite element solutions in structural dynamic analyses
is given in [29]. The proposed problems correspond to K¢ = AM ¢ (free vibration analysis),
where K and M are the structural stiffness and mass matrices, w = VX is a free vibration
frequency and ¢ is the corresponding mode shape. The in plane pin-ended double cross
shown in Figure 8 is one of those test cases. Due to the characteristics of the model, there
are many repeated and close eigenvalues. For example, the third frequency has multiplicity
four. In [29] the discretization of each arm of the double cross was performed with 4 beam
elements, resulting in a system with 83 equations. In the present work the discretization has
been performed with 40 equal elements per arm, leading to a problem with dimension 947.
The resulting matrix K has 13160 entries and M is diagonal. With a finer mesh, frequencies
that can not be represented by the coarse mesh are then introduced. The Figure 9 shows the
eigenvalue distribution computed with Matlab for this problem: there are 56 eigenvalues in
the range [10%,107], while the remaining are greater than 107.

Table 2 shows the results of some experiments performed with the double cross on a Sun
Sparc 10/41. We have measured the CPU time, which is given in seconds, the number of
steps performed and the number of solutions converged, for different combinations of m and
p. The number of steps and solutions are given between parentheses. The eigenvalue interval
was set to [0,0] and spectral slicing was not used. Random entries were assigned to the
starting vectors. Each CPU time listed includes the factorization K = A, = LDLT, which
required 0.6 s, with K stored in a skyline way. In theory, the basic Lanczos algorithm can not
detect eigenvalue multiplicities [33]. However, solutions agreeing in many digits are generally
achieved due to roundoff errors. It is thus interesting to note in Table 2 that, in spite of the
repeated solutions, the best overall performance was obtained with p = 1. All the same, useful
information can be extracted from those experiments. To begin with, the CPU time variation
is smoother for larger block sizes. It is explained by the fact that solutions converged with
larger basis sizes when p > 2, therefore with an initial overhead. Another thing is that the
reduced problem is easier to solve when p = 1, which makes a difference when n is relatively
small. Finally, the costs for the basis orthogonality control played an important role. Let
us consider j blocks of vectors for a modified partial reorthogonalization. Then, 7 X p X p
inner products and vectors updatings would be required for the reorthogonalization of @ ;4.
Therefore, for bases of dimension 7 X p, the costs of reorthogonalizing are proportional to p.
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Figure 9: Eigenvalue spectrum for the double cross (logarithmic scale).

Table 2: Computational performance for the double cross.

m p

(22-8) | (9-5) | (14-14) | (11-11) | (8-8) | (8-10)
10 2.5 2.2 3.8 4.2 6.3 5.3
(33-12) | (14-12) | (14-14) | (11-11) | (11-17) | (8-10)
15 2.7 4.1 5.5 5.1 6.5 8.1
(34-22) | (22-20) | (17-15) | (12-15) | (11-17) | (10-16)
20 2.8 4.2 6.8 7.4 8.9 11.0
(34-22) | (22-20) | (19-21) | (15-24) | (13-24) | (12-24)
25 4.9 6.0 9.9 12.0 11.0 13.0
(50-27) | (27-30) | (23-30) | (19-31) | (14-26) | (13-26)
30 6.2 6.0 9.9 12.0 14.0 16.0
(55-55) | (27-30) | (23-30) | (19-31) | (16-34) | (14-34)
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4.2 A SVD estimation

In this application we deal with a standard eigenproblem. In particular, BLZPACK is em-
ployed to estimate some singular values and vectors of the matrix WM3, which is available
in the Harwell-Boeing Sparse Matrix Collection [12]. The singular value decomposition is a
clever way of determining the matrix rank and it is therefore a useful tool in the analysis
of systems of equations [15]. WM3 is related with a model of the world economy and has
dimension 207 x 260. Its pattern is given in Figure 10, which contains 2948 entries, and its
singular values distribution computed with Matlab is given in Figure 11.

For a real r X s matrix C' there are two possible computational strategies for obtaining the
singular value decomposition. The first is based on the product CTC, while the second
requires the (r 4+ s) X (r 4 s) operator defined as

0o C
A= .
The latter approach presents better numerical properties than the former [15], with the
associated problem Az = Az corresponding to

0o C 2(1) Cz(2) 21
cT o 22 (~ T z(1) =A 2@ (7

whose eigenvalues appear as pairs (=, +A), where || is a singular value of C' and (M and
2? are the corresponding right and left singular vectors [9, 15]. Moreover, thinking in terms
of a Krylov subspace, the matrix A does not need to be explicitly formed. One can keep C
and perform computations as follows

(1) (2)
q; Cq;
Ag: = A J — J ’
o { ¢\ } { cTqt) }
(1) (2)

where ¢; * and ¢;” have lengths r and s, respectively, thus generating the Krylov subspace

k] &0 L0V gy = ganc{ )V L Cal L fOCTa L [octeqd
Crol g ) vl CeEr 1 B Werhertuly i Werreleryin

On the other hand, Cullum et al. [9] showed that for the computation of singular and singular

(1) _ (2) _

vectors with a Lanczos based code, it is appropriate to set ¢; '=0, if r > s, or q12 =0,if r<s.
Only a multiplication by either C' or C7 is thus required at each step (and the projection
matrix has zero diagonal entries). Setting the block size to 3 and the starting block as

m 2 6
Ro— |70 To 7o — 0B
0 [ 0 0 0 ] @1B1

(1) (2) (3)

with random entries for ry’, 7y’ and 7y, the Table 3 lists a set of eigenvalues and residuals
for a basis of size 60 (20 steps), computed on a Sun 10/41 workstation. We can verify that
some of the triples (/\,$(1),m(2)) are already well approximated. Such a strategy is thus
useful in the computation of a partial SVD decomposition. However, one should note that
BLZPACK is not tuned for this type of application. The objective here is to show that the
structure of A can be handled without difficulty due to the flexibility allowed by the reverse
communication strategy.
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Figure 10: The pattern of WM3.

0 5

Figure 11: Singular values distribution for WM3.
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Table 3: Singular value approximations for WM3.

value ‘ residual ‘

O 00 ~1I D U W N T

—
<

2.5058E4-01
1.3422F+01
1.2318E+01
1.0970E+01
1.0478E+01
1.0022E+01
7.2500E+00
7.2464F+00
7.2459F+00
7.2249F+00

2.5603E-14
3.9291E-09
2.2718E-08
9.3881E-08
1.2261E-06
1.6983E-06
6.4634E-03
1.0593E-02
1.3570E-02
3.3899E-02
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4.3 Citrate Synthase

This application comes from the study of motions of a protein [26]. It is a standard eigenprob-
lem with A corresponding to the product M~Y2V2EM~1/2 where E represents the potential
energy and M is the matrix of the atomic masses (diagonal). We can certainly identify in A
an original generalized eigenproblem formulation, but that is the way the problem is retrieved
from the CHARMm 21.3 package. The dimension of the problem is three times the number
of atoms, the eigenvectors lead to the normal modes and the square root of the eigenval-
ues to the associated pulsations. The idea is to express the atomic motions as sinusoidal
contributions of the normal modes. We give here some results related with the analysis of
the hinge-bending motions for the protein citrate synthase, whose ribbon representation is
depicted in Figure 12. The dimension of the problem is 25584 and the number of nonzero
entries in the upper triangle of the matrix is equal to 3691020 (including the diagonal).

We were interested in the 10 smallest eigenvalues greater than zero, so that an inverse for-
mulation for A was applied. Since the protein is free in the space, the first 6 eigenvalues have
no practical interest because they are associated with free (zero energy) molecular motions.
The first 16 eigenvalues of citrate synthase are listed in Table 4, as well as the corresponding
residual norms ﬁ](k) The first 6 eigenvalues are not exactly zero due to roundoff errors in the
minimization of F. Based on previous analyses with smaller proteins, a block size equal to
6 was used, with one translation of origin, equal to —0.001. After 20 steps (120 vectors) all
required eigenvalues had converged with 671 s of CPU time on one processor of a CRAY C90,
including the factorization of the matrix A, which was stored in a skyline way.

4.4 Block size and spectrum slicing effects

Table 4.4 lists a set of matrices available in the Harwell-Boeing Sparse Matrix Collection [12],
which have been employed to examine the effects of the block size and the spectrum slicing
strategy previously outlined. Some problems are generalized, which are given by pairs of
matrices BCSSTK_ and BCSSTM_ (from structural engineering analyses). In such cases, we
have included properties of the matrix B (minimum and maximum entries). Other problems
are related with systems of linear equations, for which we have set B = I. Information about
the eigenvalues obtained for each problem is included. Unless indicated in the table, we have
set the number of required solutions arbitrarily and the computation interval to [0, 0], thus
seeking for solutions close to 0. We then varied p from 1 to 6 and verified the CPU time spent,
which is given in seconds (including factorizations), and the number of runs and factorizations
performed, which are given as pairs a-b. In some cases a#b, which means that a factorization
was used to validate solutions (using the inertia information) or a restart was performed
keeping o fixed. The routine MA47 available in the Harwell Subroutine Library [1] was used
to factor matrices and solve systems of equations. The computations were performed on an
IBM Risc 6000/950 workstation.

The experiments have been performed not only with large matrices, but also with matrices
presenting some numerical interest. The matrix B in the first problem (the pair BCSSTKO04-
BCSSTMO04), for instance, is positive semidefinite. Therefore, the Lanczos algorithm reaches
an invariant subspace with p > 2, for the number of solutions specified.
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Figure 12: Ribbon representation for citrate synthase.

Table 4: Eigenvalues of citrate synthase.

‘ UECtOT‘ A ‘ residual ‘
1 -2.4910E-07 | 7.1047E-17
2 -1.4114E-07 | 1.5049E-15
3 -5.8901E-08 | 1.5781E-14
4 -9.7219E-09 | 1.9154E-14
5 1.3586E-08 | 6.4485E-15
6 6.1083E-08 | 2.0790E-15
7 5.6842E-04 | 9.1855E-15
8 8.4499E-04 | 1.56364E-13
9 9.1908E-04 | 4.3734E-13
10 1.0837E-03 | 3.9170E-12
11 1.2225E-03 | 1.9194E-11
12 1.3587E-03 | 3.2015E-11
13 1.4104E-03 | 3.7157E-10
14 1.5565E-03 | 9.4498E-10
15 1.7724E-03 | 6.9597E-10
16 1.8248E-03 | 3.7490E-09
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On the other hand, the first eigenvalue of the matrices BCSSTK14 and BCSSTK16 has a
very high multiplicity. The algorithm tries to extend the boundaries of the computational
interval and validate the solutions found, detects that there are missing solutions (due to
the high multiplicity of the first eigenvalue), and performs a set of translations aiming at
identifying possible subintervals containing the missing eigenvalues.

PLAT362 and PLAT1919 are related with oceanic modelling. The first matrix is quasi-
singular, but the fact that we have set o7 = 0 did not pose major difficulties. The second
matrix is singular and the literature [25] refers to solutions of interest in the middle of the
spectrum, namely in the intervals [0.000025,0.0001] and [0.0001,0.24]. We have then defined
these 2 intervals (one at a time) for the algorithm and asked for 100 solutions. In the first
case, the actual number of solutions in the interval (64) was less than the number required,
in contrast with the second (572 eigenvalues in the interval).

Two problems, BCSSTK25 and NOS6, required special attention. Preliminary analyses per-
formed with the package revealed the existence of very large clusters in the lower end of the
spectrum: BCSSTK?25 has 132 eigenvalues in the range [9.6140 x 107%,9.8624 x 10~%]; NOS7
has 57 eigenvalues in the range [1.0000, 1.0003]. In order to compute those eigenvalues and
associated eigenvectors, the limits of the computational interval had to be set very close to
the boundaries of the clusters. The imposition of such a constraint is twofold. First, solutions
far from the cluster may converge before the eigenvalues in the cluster. By limiting the region
of search, the code will discard other solutions. Second, the shift selection will be based only
on the information obtained for the cluster, thus avoiding unnecessary factorizations.

5 Conclusions

This work described BLZPACK, an implementation by blocks of the Lanczos algorithm in-
tended for the determination of a set of eigenvalues and associated eigenvectors of real, sparse,
symmetric matrices. The package can be applied either to the standard problem Az = Az or
to the generalized problem Az = ABz. One of the main objectives of the implementation was
to provide a neat interface for the user. Therefore, the package supports a set of interaction
levels, so the user can set an automatic spectrum slicing, define the threshold for convergence
and specify starting vectors, for instance.

Another important point is that the matrices A and B are not required internally in the pack-
age. This means that each time a computation involving either A or B has to be performed,
the control is returned to the user. Such calculations can be either matrix-vector products
(the second application in the previous section) or solutions of systems of linear equations
(shift-invert approach). Since the matrices A and B are kept outside the code, the user is
free to employ specific storage strategies or experiment with different factorizations routines.

In the applications section, the utilization and performance of the code was examined by
means of distinct study cases. In general, for the approach adopted for the shift strategy,
and considering the computers on which the experiments were performed, p up to 3 showed
to be a good compromise in terms of performance. It should be noted that even for p = 1
the package has a block structure and do not profit from particularities this case offers .
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For matrices with n > 1000 we have noticed that the solution of the reducing problem involv-
ing T; was negligible compared with other operations, independently of the values assigned to
p. On the other hand, the operations required for controlling the level of orthogonality were
sometimes important, mainly for problems with big clusters or eigenvalues with high multi-
plicity. However, when p > 3 the code automatically sets for level 3 BLAS kernels, which can
lead to high performances on many computers. Although we have not performed analyses
with huge problems, it is likely that factorizations would dominate the costs, together with
solutions of systems of equations.
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A User’s Guide

The Users’ Guide has been moved to a separate file in order to simplify eventual updatings.
Please check the directory doc in the blzpack distribution. In case of trouble, send an e-mail
to osni@nersc.gov.
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